desimodel Documentation
Release 0.17.0

DESI

Nov 17, 2022

Contents

1 Introduction

2 Contents

3 Indices and tables
Python Module Index

Index

43

45

47

CHAPTER 1

Introduction

This is the documentation for desimodel.

desimodel Documentation, Release 0.17.0

2 Chapter 1. Introduction

CHAPTER 2

Contents

2.1 desimodel Release Notes

2.1.1 0.18.0 (unreleased)

* No changes yet.

2.1.2 0.17.0 (2021-09-19)

* On focal plane sync, update KPNO-wide default DESIMODEL/data checkout. (PR #151).
» Handle swapped fibers 3429, 3402 (PR #152).

* Remove deprecated focal plane generation routine, update associated docs.

2.1.3 0.16.0 (2021-06-25)
e Update etc/desimodel_sync_kpno_cron.sh for automatically syncing the focalplane model to the
latest DB dump (PR #148).
¢ Add fiberfrac to PSF seeing conversions (PR #149).

* Move from positioner exclusion yaml format to much faster json format (PR #150).

2.1.4 0.15.0 (2021-04-19)

Code in GitHub:

* Use UTC time everywhere in the focalplane model (PR #147). This is backwards compatible with old files, but
new FP models will not be readable by previous code tags.

Data in svn:

https://github.com/desihub/desimodel/pull/151
https://github.com/desihub/desimodel/pull/152
https://github.com/desihub/desimodel/pull/148
https://github.com/desihub/desimodel/pull/149
https://github.com/desihub/desimodel/pull/150
https://github.com/desihub/desimodel/pull/147

desimodel Documentation, Release 0.17.0

* DB sync 2021-04-03T23:53:23 appended to desi-state-2021-03-17T23:20:01.ecsv.
* DB sync 2021-04-10T20:00:39 appended to desi-state_2021-03-17T23:20:01.ecsv.
* DB sync 2021-04-13T20:00:30 appended to desi-state_2021-03-17T23:20:01.ecsv.

2.1.5 0.14.2 (2020-03-31)

Data changes to svn, no code changes:
e Added LYA TSNR2 templates.
* Focalplane model updated 2021-03-17.

2.1.6 0.14.1 (2021-03-18)

* Add fastfiberacceptance code originally in specsim (PR #145).

2.1.7 0.14.0 (2021-02-10)

¢ Code (in GitHub):

— travis test fixes for old astropy (PR #141).

— move command line scripts from svn to git (PR #142).

— add option to exclude petals from restricted reach (PR #144).
e Data (in svn):

— added Template Signal-to-Noise (TSNR) ensembles

added pre-calculated Noise Equivalent Area (NEA) from PSF model

Corrected restricted reach focalplane model (@ 135002)
Focal plan model with full reach for petal locs 0,2,4,5 (@135236)

2.1.8 0.13.1 (2020-08-03)

* New tag of data+code since data had been erroneously pre-tagged 0.13.0

2.1.9 0.13.0 (2020-08-03)

* Fix py3.8 syntax warnings (PR #140).
* Fix corner cases in generating and using focalplane models (PR #139).

* Use DESI-5501 (as built) instead of DESI-334 (design) for spectrograph throughput (PR #137).

4 Chapter 2. Contents

https://github.com/desihub/desimodel/pull/145
https://github.com/desihub/desimodel/pull/141
https://github.com/desihub/desimodel/pull/142
https://github.com/desihub/desimodel/pull/144
https://github.com/desihub/desimodel/pull/140
https://github.com/desihub/desimodel/pull/139
https://github.com/desihub/desimodel/pull/137

desimodel Documentation, Release 0.17.0

2.1.10 0.12.0 (2020-03-13)

* update platescale to as-built DESI-4037v5 (PR #136).
* update desi-focalplane model for limited phi range 20200306 (svn data).
* fix bug in generating focalplane model from old fiberpos files (PR #139).

* use >= not > when comparing runtime to focalplane model #139).

2.1.11 0.11.0 (2020-03-13)
e Updated data/footprint/desi-tiles.fits and desi-healpix-weights.fits with new
dither pattern; see DESI-0717. Layers 0=GRAY, 1-4=DARK instead of 0-3=DARK, 4=GRAY. (PR #135).

» Update documentation for desimodel. i0; use desimodel.io.findfile () consistently throughout
the module (PR #133).

¢ Update README file and Travis tests (PR #132).
¢ Include S (curved focal surface arc length) vs. R (CS5 xy radius) table from DESI-0530 (PR #130 and #135).

2.1.12 0.10.3 (2019-12-20)

* Pass multiple sets of exclusion polygons (PR #128).

* Propagate existing focalplane state to new focalplanes (PR #129).

2.1.13 0.10.2 (2019-10-31)

* Improve focalplane creation code (PR #127).

2.1.14 0.10.1 (2019-10-17)

* Workaround upstream bugs in positioner locations (PR #118).

* Added desimodel.focalplate.fieldrot.field_rotation_angle with field rotation CS5 vs. ICRS due to precession
(PR #119).

¢ Add focalplane model documentation (PR #125).

2.1.15 0.10.0 (2019-09-25)

* Store petal and gfa keepouts in the focalplane model (PR #112).
* When generating a focalplane, check for device locations assigned to the same slitblock and fiber (PR #113).
* Fix support for datetime.isoformat () in Python 3.5 (PR #114).

» Update tests and documentation to be consistent with latest desiutil versions (PR #115).

2.1. desimodel Release Notes 5

https://github.com/desihub/desimodel/pull/136
https://github.com/desihub/desimodel/pull/139
https://github.com/desihub/desimodel/pull/139
https://github.com/desihub/desimodel/pull/135
https://github.com/desihub/desimodel/pull/133
https://github.com/desihub/desimodel/pull/132
https://github.com/desihub/desimodel/pull/130
https://github.com/desihub/desimodel/pull/135
https://github.com/desihub/desimodel/pull/128
https://github.com/desihub/desimodel/pull/129
https://github.com/desihub/desimodel/pull/127
https://github.com/desihub/desimodel/pull/118
https://github.com/desihub/desimodel/pull/119
https://github.com/desihub/desimodel/pull/125
https://github.com/desihub/desimodel/pull/112
https://github.com/desihub/desimodel/pull/113
https://github.com/desihub/desimodel/pull/114
https://github.com/desihub/desimodel/pull/115

desimodel Documentation, Release 0.17.0

2.1.16 0.9.12 (2019-08-09)

* Support for time-varying focal plane state (e.g. broken fibers) (PR #105).
¢ Documentation about CI weather versus model (PR #107).
e Fix find points_radec () for scipy 1.3 (PR #109).

* Replace deprecated yaml.load with yaml.safe_load (PR #110).

2.1.17 0.9.11 (2019-05-30)

¢ Added data/footprint/ci-tiles-v7.fits, data/focalplane/ci-corners.ecsv to svn and docs to GitHub (PR #103).

2.1.18 0.9.10 (2019-02-28)

e io.load_tiles(tilesfile) warns if local copy exists, but DESIMODEL version wins (PR #98 and
#101).

* Update default tile radius (max radius, not typical outer pos radius) (PR #102).

2.1.19 0.9.9 (2018-09-27)

* Change default healpy pixel overlap factor from 4 to 128 (PR #93).

2.1.20 0.9.8 (2018-09-05)

e Implement dome_close_fractions () toreplay daily Mayall weather history (PR #92).
* Run tests using new svn branch test-0.9.8.

* Bug fix for GFA target selection when no targets overlap a GFA (PR #91).

2.1.21 0.9.7 (2018-07-30)

» Create DESI-3977 in doc/tex/desi3977/ to track ELG SNR with changes to the DESI model.
* Add accompanying notebook doc/nb/ELG_SNR.ipynb.

2.1.22 0.9.6 (2018-07-18)

e Update data and associated code to reflect changes in DESI-347-v13 (PR #89): * data/throughput/
thru-[brz].fits: new corrector coatings. * data/throughput/DESI-0347_blur.ecsv: new
achromatic blurs. * data/desi.yaml: new read noise and dark currents. * data/focalplane/gfa.
ecsv: replace RADIUS_MM with S. * data/throughput/DESI-0347_static_[123].fits: re-
place random offset files (RMS=10.886um) with static offset files (RMS=8.0um).

¢ Use a new svn branch test-0.9.6 for travis tests (was test-0.9.3).

6 Chapter 2. Contents

https://github.com/desihub/desimodel/pull/105
https://github.com/desihub/desimodel/pull/107
https://github.com/desihub/desimodel/pull/109
https://github.com/desihub/desimodel/pull/110
https://github.com/desihub/desimodel/pull/103
https://github.com/desihub/desimodel/pull/98
https://github.com/desihub/desimodel/pull/101
https://github.com/desihub/desimodel/pull/102
https://github.com/desihub/desimodel/pull/93
https://github.com/desihub/desimodel/pull/92
https://github.com/desihub/desimodel/pull/91
https://github.com/desihub/desimodel/pull/89

desimodel Documentation, Release 0.17.0

2.1.23 0.9.5 (2018-06-27)

* Increase test coverage, especially for desimodel. t rim (PR #82).
* Reorganize desimodel . focalplane and add more GFA selection code (PR #85).

¢ Allow an environment variable in the tilesfile filename (PR #87).

2.1.24 0.9.4 (2018-03-29)

* Download script will create INSTALL_DIR if it doesn’t exist (PR #80).

2.1.25 0.9.3 (2018-03-14)

* Fix some installation bugs, and update to latest versions on various dependencies (PR #77).
* Ensure that desimodel tests are compatible with Astropy 2 and 3, and with other DESI packages (PR #78).

e Add footprint/desi-healpix-weights.fits and throughput/
galsim-fiber—-acceptance. fits to the trimmed test data set (PR #79).

2.1.26 0.9.2 (2018-02-27)

e Update LyA S/N calculation (PR #73).

» Optionally use an input pixel weight map in 1oad_pixweight () (PR #74).
2.1.27 0.9.1 (2017-11-10)

» Extracts wavelength coverage from specpsf files into params dictionary (PR #68).

e Added programZpass () and passZprogram () to convert between tiling integer pass number and string
program name (PR #67).

2.1.28 0.9.0 (2017-09-19)

Added desimodel.focalplane.radec2xy, which converts RA, Dec coordinates to x, y coordinates on the focal
plane, which accepts vector inputs.

Added desimodel.focalplane.on_gfa() and its respective helper functions to check if a target is on a GFA of
arbitrary telescope pointing

Added desimodel.focalplane.on_tile_gfa() to check return a list of indices of targets on a specific tile

¢ Added desimodel.focalplane.get_gfa_targets() to return a table with added columns GFA_LOC and TILEID that
consists of all targets on any GFA on any tile satisfying a minimum flux in the r-band.

* Unittests for the desimodel.focalplane functions were updated accordingly.

* Added desimodel.footprint.find_points_in_tel_range() to return a list of indices withnin a radius of an arbitray
telescope pointing, unaware of tiles (Added respective unittest)

* Adds desimodel.focalplane.fiber_area_arcsec2()

» Updates tests to work with trimmed data subset

2.1. desimodel Release Notes 7

https://github.com/desihub/desimodel/pull/82
https://github.com/desihub/desimodel/pull/85
https://github.com/desihub/desimodel/pull/87
https://github.com/desihub/desimodel/pull/80
https://github.com/desihub/desimodel/pull/77
https://github.com/desihub/desimodel/pull/78
https://github.com/desihub/desimodel/pull/79
https://github.com/desihub/desimodel/pull/73
https://github.com/desihub/desimodel/pull/74
https://github.com/desihub/desimodel/pull/68
https://github.com/desihub/desimodel/pull/67

desimodel Documentation, Release 0.17.0

2.1.29 0.8.0 (2017-08-07)
* Add new weather module to specify assumed atmospheric seeing and transparency distributions at KPNO, with
accompanying DESI-doc and jupyter notebook.
* Remove seeing module, which is superseded by new weather module.

* Added desimodel.footprint.pixweight() in desimodel.footprint to create an array of what fraction of
every HEALPixel at a given nside overlaps the DESI footprint

* Also added desimodel.footprint.tiles2fracpix() to estimate which HEALPixels overlap the footprint edges

e Added desimodel.io.load_pixweight() in desimodel.io to load the array created by desi-
model. footprint.pixweight() and resample it to any HEALPix nside

* Modified path to Lya SNR spectra files used in desi_quicklya.py, used in Lya Fisher forecast.
¢ Added desimodel.inputs.build_gfa_table and its helper functions to write a .ecsv file for GFA data
* Added desimodel.io.load_gfa to return the GFA data table

* Added desimodel.focalplane.xy2radec, which converts X,y coordinates on the focal plane to RA, Dec coordi-
nates

 don’t print warnings in desimodel.io if specter isn’t installed

2.1.30 0.7.0 (2017-06-15)

* Added desimodel.footprint.tiles2pix and .pix2tiles for mapping healpix to DESI tiles.
* fixed psf-quicksim.fits units to be astropy-friendly

¢ added desimodel.io.load_target_info()

2.1.31 0.6.0 (2017-03-27)
* Add desimodel.seeing module with functions that model the expected DESI zenith seeing at 6355A, with an
accompanying jupyter notebook.

* Altered xy offset RMS calculation in focalplane.py to scale the distribution RMS rather than the sample standard
deviation.

» Update focal plane to positioner mapping
¢ z-channel 250 um CCD instead of 500 um CCD
» Update DocDB -> desimodel update method for fiberpos and throughput

2.1.32 0.5.1 (2016-12-01)

* By default, desimodel.io.load_tiles now excludes PROGRAM=EXTRA layers

¢ Adds desi-tiles.* tests

8 Chapter 2. Contents

desimodel Documentation, Release 0.17.0

2.1.33 0.5.0 (2016-11-21)

* Moved test of focalplane code into the actual test suite.

¢ Preparing for Python 3.

* Changed default svn version to trunk and added error handling to install_desimodel_data.
» Update template module file to reflect DESI+Anaconda infrastructure.

* Add code to generate random centroid offsets in desimodel . focalplane.

* Add jupyter notebook documenting new throughput files of PR#29.

» Use Astropy-recommended method of reading FITS data tables.

* Remove reference to Travis scripts in MANIFEST.in.

2.1.34 0.4.5 (2016-07-15)

* Fixed a minor bug that made the help message for install_desimodel_data garbled.

* Add additional files to lightweight test data to work with quickgen

2.1.35 0.4.4 (2016-03-15)

e Allow desiInstall to download and install the data from svn.

* No changes to data in svn.

2.1.36 0.4.3 (2016-03-10)

* “First” post-separation tag.

e Added desimodel.trim.trim data () for trimming a data directory into a lightweight version for test-
ing.

¢ svn data includes targets.dat: preliminary numbers for MWS and BGS densities (Still waiting upon supporting
technote).

2.1.37 0.4.2 (2016-02-04)

* Improved svn download instructions in the README file.
¢ Changes to data on svn side

— updated desi.yaml with dark vs. bright exptime

— updated targets.dat to include MWS placeholders

* desimodel.io.load desiparams () adds ‘exptime’ -> ‘exptime_dark’ key for temporary backwards
compatibility

* Removed deprecated fibers module
» Use ci-helpers to handle most of the dirty work of Travis build scripts.

* Make specter import errors more verbose.

2.1. desimodel Release Notes 9

https://github.com/desihub/desimodel/pull/29
https://github.com/astropy/ci-helpers
https://github.com/desihub/specter

desimodel Documentation, Release 0.17.0

2.1.38 0.4.1 (2016-01-25)

* Last tag prior to separating desimodel into code (GitHub) and data (svn) repositories.
* pip install support (BAW).

* Replace fitsio dependency with astropy.io.fits.

2.1.39 0.4 (2015-12-14)

* Added tile file for the bright time survey.

2.1.40 0.3.8 (2015-10-30)

* Adds python io library (SJB).

2.1.41 0.3.7 (2015-04-16)

* Tag to support dogwood production (SJB).

2.1.42 0.3.6 (2015-01-30)

* Adds desimodel.focalplane.FocalPlane.xy2radec () from Jaime (SJB).

2.1.43 0.3.5 (2014-12-28)

data/targets/targets.dat added fractions for sky and stdstar fibers (SIB).
py/desimodel/focalplane.py bug fixes for transformations (SJB).

2.1.44 0.3.4 (2014-09-23)

* Fix a simple import error (BAW).

2.1.45 0.3.3 (2014-09-23)

* Fix a simple version error (BAW).

2.1.46 0.3.2 (2014-09-23)

* Change how version is set (BAW).

» Updated target numbers.

2.1.47 0.3.1 (2014-07-23)

* Also updated quicksim sn-spec* file output, using IDL version which is slightly more optimistic than the python
version (diff is dark current?) (SJB).

10 Chapter 2. Contents

desimodel Documentation, Release 0.17.0

2.1.48 0.3 (2014-07-23)

Updated throughput files for real.

¢ Added initial “compare_versions.py” script to make it easier to visualize differences in versions. This script
should grow as various parameters change; right now it only makes a thoughput difference plot (SJB).

» Updated throughput files from 0334v3 (spectro) and 0347v5 (system throughput) Correction: thoughput files
didn’t make it into that change (SJB, 2014-07-08).

Updated psf-b.fits and psf-quicksim.fits to match new npix_y for blue STA/ITL CCDs (SJB, 2014-07-08).

2.1.49 0.2 (2014-07-08)

2014-07-07 SJB

¢ Added ELG spectrum with continuum and multiple emission lines

2014-07-07 David Kirkby

Python quicksim
* add readnoise contributions in quadrature during the downsampling
» Refactor for speed, results now named ndarray, updated plots
» Allow different base directories

2014-07-02 DJS

e Put sky back to dimmer UVES sky model

2.1.50 0.1 (2014-07-01)
2014-06-29 SJB

» Extended fiberloss range from 3500-10000 instead of 3600-10000

* Added data/throughput/fiberloss-gqso.dat (same as fiberloss-star.dat)
2014-06-27 SJB

» Updated data/focalplane/platescale.txt with latest from DESI-0329v14. This includes a new “theta” column.

* Updated desi.yaml from DESI-0347v4. This removes the FWHM and wavemin/max params which are not
derived quantities associated with the PSFs.

Updated throughput files with new numbers from DESI-0347v4.
» Updated spectrograph throughput files with new numbers from DESI-0334v2.

Updated py/fiberloss.py -> bin/fiberloss.py . Biggest change is ELG half light radius 0.35” -> 0.45” which drops
us below 7-sigma.

» Updated data/throughput/fiberloss-*.dat files with calculation based upon fiberloss.py

2.1. desimodel Release Notes 11

desimodel Documentation, Release 0.17.0

¢ bin/psf2quicksim.py extracted PSF parameters needed for quicksim.

— pro/desi_quicksim.pro updated, but it still treats FWHM as constant rather than wavelength depen-
dent.

— python quicksim will be broken until it is updated to use new inputs.
* Reorganized data/inputs/throughput/
* spots2psf.py: leftover spot mirroring bug removed, PSFs updated

2014-06-12 SJB

» Updated throughputs to not double count central obscuration.
» Updated PSF files to remove throughputs to avoid possible inconsistency.

* Added wavemin_all, wavemax_all to desi.yaml with min/max wavelength seen by all spectra

2014-06-06 SJB

» Updated CCD pixel dimensions and regenerated PSFs to match.

2.2 The desimodel package/API

2.2.1 desimodel

A package for providing machine-readable data about the DESI focal plane and other hardware designs to simulations.

2.2.2 desimodel.focalplane.geometry

Dimensions and coordinate system transforms for the DESI focal plane.

class desimodel.focalplane.geometry.FocalPlane (ra=0.0, dec=0.0)
A class for modeling the DESI focal plane and converting between focal plane coordinates (in mm) and RA,
Dec on the sky (in degrees). Provides utility functions for mapping which positioners cover which (RA, Dec) or
(X, y) locations and vice versa.

Parameters

* dec (ra,) — Initialize DESI focal plane model with the telescope pointing at (ra, dec) in
degrees.

* NOTE (this class is deprecated (or should be further
expanded), but)-—

* not removing it yet in order to not arbitrarily break code
that (I 'm) -

* be using it. (might)-

_check_radec (ra, dec)
Raise ValueError if RA or dec are out of bounds.

12 Chapter 2. Contents

desimodel Documentation, Release 0.17.0

radec2pos (ra, dec)
Identify which positioners cover (ra, dec).

If ra, dec are floats, return an array of positioner IDs that cover it. The array could be empty if no positioner
covers that location.

If ra, dec are numpy arrays, return a list of arrays. The ith element is an array of positioner IDs that cover
(ra[i], decl[i]).

Warning: This method is not implemented!

radec2xy (ra, dec)
Convert (RA, Dec) in degrees to (X, y) in mm on the focal plane given the current telescope pointing.

If RA and Dec are floats, returns a tuple (x, y) of floats If RA and Dec are numpy arrays, returns a tuple
(x, y) of numpy arrays

Parameters dec (ra,) — Sky position.
Returns A tuple containing the (X, y) coordinates in mm.
Return type tuple ()

set_tele_pointing (ra, dec)
Set telescope pointing to (RA, Dec) in degrees.

Parameters
L] ra —
* dec (float) — Telescope pointing in degrees.

xy2pos (X, y)
Identify which positioners cover (x, y).

Warning: This method is not implemented!

xy2radec (x,)
Convert (x, y) in mm on the focal plane to (ra_object, dec_object) in degrees on the sky given the current
telescope pointing towards (RA, Dec).

x, y must be floats. This function is vectorized in xy2radec(), which doesn’t appear to exist.
Parameters y (x,) — Position on the focal plane in mm.
Returns Coordinates of object.

Return type tuple ()

desimodel.focalplane.geometry._extrapolate_r_ s (r,s)

Utility function for xy2qs and qs2xy; returns new r, s with extrapolations to 0 and max(r)+10 mm.

desimodel.focalplane.geometry.fiber area_arcsec2 (x,y)

Returns area of fibers at (x, y) in arcsec”2.

desimodel.focalplane.geometry.get_radius_deg(x,y)

Returns the radius in degrees given x, y coordinates using the platescale data.
Parameters

* x (float)— The x coordinate in mm of a location on the focal plane

2.2. The desimodel package/API 13

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

desimodel Documentation, Release 0.17.0

* y(float)—They coordinate in mm of a location on the focal plane
Returns Radius corresponding to x, y.
Return type float

desimodel.focalplane.geometry.get_radius_mm (theta)
Returns an array of radii in mm given an array of radii in degrees using the platescale data relative to the center
of the focal plane as (0,0). Supports scalar and vector inputs.

Parameters theta (f1loat or array-like) — An array that represents the angle from the center of
the focal plane.

Returns Radii in mm.
Return type float or array-like

desimodel.focalplane.geometry.get_tile_ radius_deg ()
Returns maximum radius in degrees covered by the outermost positioner.

desimodel.focalplane.geometry.get_tile_radius_mm()
Returns maximum radius in mm covered by the outermost positioner.

desimodel.focalplane.geometry.qs2xy (g, s)
angular q,s on curved focal surface -> focal tangent plane X,y

Parameters
* g - angle in degrees
* s — focal surface radial distance in mm
Returns (x, y) cartesian location on focal tangent plane in mm

Notes: (x,y) are in the “CS5” DESI coordinate system tangent plane to the curved focal surface. q is the radial
angle measured counter-clockwise from the x-axis; s is the radial distance along the curved focal surface; it is
not sqrt(x**2 + y**2). (q,s) are the preferred coordinates for the DESI focal plane hardware engineering team.

desimodel.focalplane.geometry.radec2xy (felra, teldec, ra, dec)
Returns arrays of the x, y positions of given celestial objects on the focal plane given an arbitrary telescope
pointing in RA and Dec and arrays of the ra and dec of celestial objects in the sky.

Parameters

* telra (float) - The telescope’s RA pointing in degrees.

* teldec (float)— The telescope’s Dec pointing in degrees.

* ra (array-1like)— An array of RA values for locations in the sky.

* dec (array-1ike)— An array of Dec values for locations in the sky.
Returns The x, y positions corrsponding to ra, dec.

Return type tuple

Notes

Implements the Haversine formula.

desimodel. focalplane.geometry.xy2gs (x,y)
Focal tangent plane X,y -> angular g,s on curved focal surface

Parameters y (x,) — cartesian location on focal tangent plane in mm

14 Chapter 2. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

desimodel Documentation, Release 0.17.0

Returns (q, s) where gq=angle in degrees; s=focal surface radial dist [mm]

Notes: (x,y) are in the “CS5” DESI coordinate system tangent plane to the curved focal surface. q is the radial
angle measured counter-clockwise from the x-axis; s is the radial distance along the curved focal surface; it is
not sqrt(x**2 + y**2). (q,s) are the preferred coordinates for the DESI focal plane hardware engineering team.

desimodel.focalplane.geometry.xy2radec (felra, teldec, x, y)
Returns the new RA and Dec of an x, y position on the focal plane in the sky given an arbitrary telescope pointing
in RA and Dec.

Parameters
* telra (float)— The telescope’s RA pointing in degrees.
* teldec (float) — The telescope’s Dec pointing in degrees.
* x (float)—The x coordinate in mm of a location on the focal plane
* y(float) - They coordinate in mm of a location on the focal plane
Returns The RA, Dec corresponding to x, y.

Return type tuple

2.2.3 desimodel.footprint

Utility functions for working with the DESI footprint.

desimodel. footprint ._embed_sphere (ra, dec)
Embed ra, dec to a uniform sphere in three dimensions.

desimodel. footprint.find points_in_tiles (tiles, ra, dec, radius=None)
Return a list of indices of points that are within each provided tile(s).

This function is optimized to query a lot of points with relatively few tiles.

radius is in units of degrees. The return value is an array of lists that contains the index of points that are in each
tile. The indices are not sorted in any particular order.

if tiles is a scalar, a single list is returned.
default radius is from desimodel.focalplane.get_tile_radius_deg()

desimodel. footprint.find_points_radec (felra, teldec, ra, dec, radius=None)
Return a list of indices of points that are within a radius of an arbitrary telra, teldec.

This function is optimized to query a lot of points with a single telra and teldec.

radius is in units of degrees. The return value is a list that contains the index of points that are in each tile. The
indices are not sorted in any particular order.

if tiles is a scalar, a single list is returned.
default radius is from desimodel.focalplane.get_tile_radius_deg()
Note: This is simply a modified version of find_points_in_tiles, but this function does not know about tiles.

desimodel. footprint.find_tiles_over_ point (tiles, ra, dec, radius=None)
Return a list of indices of tiles that covers the points.

This function is optimized to query a lot of points. radius is in units of degrees. The return value is an array of
list objects that are the indices of tiles that cover each point.

The indices are not sorted in any particular order.

if ra, dec are scalars, a single list is returned.

2.2. The desimodel package/API 15

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

desimodel Documentation, Release 0.17.0

default radius is from desimodel.focalplane.get_tile_radius_deg()

desimodel. footprint.get_tile_radec (tileid)
Get the coordinates of a tile.

Parameters tileid (int)—1ID of atile.

Returns (ra, dec) in degrees for the requested fileid.
Return type tuple

Raises ValueError — If tileid is not in list of known tiles.

desimodel.footprint.is_point_in_desi (tiles, ra, dec, radius=None, return_tile_index=False)
If a point (ra, dec) is within radius distance from center of any tile, it is in DESIL.

Parameters

* tiles (Table-1ike)—The outputof desimodel.io.load _tiles (),orasimilar
Table.

* ra(scalar or array-like)—Right Ascension in degrees.

* dec (scalar or array-like)— Declination in degrees. The size of dec must match
the size of ra.

* radius (float, optional) — Tile radius in degrees; if None use desimodel.
focalplane.get_tile_radius_deg().

e return_tile_index (bool, optional)-If True, return the index of the nearest
tile in tiles array.

Returns Return True if points given by ra, dec lie in the set of tiles.

Notes

This function is optimized to query a lot of points.

desimodel.footprint .pass2program (tilepass)
Converts integer tile pass number to string program name.

Parameters tilepass (int or int array) - tiling pass number.
Returns Program name for each pass (str or list of str).

desimodel. footprint.pix2tiles (nside, pixels, tiles=None, radius=None)
Returns subset of tiles that overlap the list of pixels.

Parameters
* nside (int)— HEALPIxX nside, 2+ xk where 0 < k < 30.
* pixels (array-1ike)— Array of integer pixels using nested numbering scheme.

e tiles (Table-1like, optional) — Table-like with RA,DEC columns; or None to
use all DESI tiles from desimodel.io.load tiles ().

* radius (float, optional) — Tile radius in degrees; if None use desimodel.
focalplane.get_tile_radius_deg().

Returns Table of tiles that cover these pixels.

TODO: add support for tiles as integers or list/array of integer TILEIDs.

16 Chapter 2. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

desimodel Documentation, Release 0.17.0

desimodel. footprint .pixweight (nside, tiles=None, radius=None, precision=0.01, outfile=None,

outplot=None)
Create an array of the fraction of each pixel that overlaps the passed tiles.

Parameters
e nside (int)—- HEALPIX nside, 2+ xk where 0 < k < 30.

e tiles (Table-1like, optional) — Table-like with RA,DEC columns; or None to
use all DESI tiles from desimodel.io.load tiles ().

* radius (float, optional) — Tile radius in degrees; if None use desimodel.
focalplane.get_tile_radius_deg().

* precision (float, optional)— Approximate precision at which to calculate the
area of pixels that partially overlap the footprint in SQUARE DEGREES (e.g. 0.01 means
precise to 0.01 sq. deg., or 36 sq. arcmin.). Lower numbers mean better precision.

* outfile (str, optional)-— Write the pixel->weight array to the file passed as outfile
(could be full directory path + file).

* outplot (str, optional)— Create a plot named outplot (pass a name for a plot in
the current directory, a full path for a plot in a different directory). This is passed to mat-
plotlib.pyplot’s savefig routine.

Returns pixweight: An array of the weight for each pixel at the passed nside. The weight is the fracion of the
pixel that overlaps the passed tiles: WEIGHT=1 for the pixel is entirely contained in the tiles; WEIGHT=0
for the pixel is entirely outside of the tiles; 0 < WEIGHT < 1 for a pixel that overlaps the tiles. The index
of the array is the HEALPixel integer.

Notes

It is sufficient to create the weights at a suitably high nside, say nside=256 (0.052456 sq. deg. per pixel)
as pixel numbers at lower nsides can be obtained by integer division by powers of 4, e.g. pix_@_nside_ 128
= pix@nside_256//4 and fractional weights at lower nsides are the mean of the 4 pixels at the higher nside
desimodel.io.load _pixweight () can downsample the array to lower nsides.

desimodel. footprint .program2pass (program)
Convert string program name to tile passes for that program.

Parameters program (str for str array) — program name, e.g. DARK, BRIGHT, or
GRAY.

Returns List of integer passes that cover that program, or list of lists if input was array-like.

desimodel. footprint .radec2pix (nside, ra, dec)
Convert ra, dec to nested pixel number.

Parameters
e nside (int)—- HEALPIX nside, 2+ xk where 0 < k < 30.
* ra(float or array)- Right Accention in degrees.
* dec(float or array)- Declination in degrees.

Returns Array of integer pixel numbers using nested numbering scheme.

2.2. The desimodel package/API 17

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
mailto:pix_@_nside_128
mailto:pix@nside_256//4
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

desimodel Documentation, Release 0.17.0

Notes

This is syntactic sugar around:

hp.ang2pix(nside, ra, dec, lonlat=True, nest=True)

but also works with older versions of healpy that didn’t have lonlat yet.

desimodel. footprint.tileids2pix (nside, tileids, radius=None, per_tile=False)
Like tiles2pix (), but accept integer tileid or list of tileids instead of table of tiles.

desimodel. footprint.tiles2fracpix (nside, step=1, tiles=None, radius=None, fact=128)

Returns a sorted array of just the fractional pixels that overlap the tiles.
Parameters

e nside (int)—- HEALPIX nside, 2+ xk where 0 < k < 30.

* step (int, optional) — The number of integration steps around the edges of a
HEALPix pixel. step=1 means just the pixel vertices. step=2 means the vertices and
the corners and the points halfway between the vertices. See also the HEALPix boundary

document .

e tiles (Table-1like, optional) — Table-like with RA,DEC columns; or None to

use all DESI tiles from desimodel.io.load tiles ().

* radius (float, optional) — Tile radius in degrees; if None use desimodel.

focalplane.get_tile_radius_deg().

» fact (int, optional) — Factor healpy uses to resolve pixel overlaps. When this is
large there are fewer false positives at the expense of run time (although fact=2x*8 seems

fast). Must be a power of 2.

Returns Integer array of pixel numbers that cover these tiles, excluding pixels that fully overlap the

tiles (i.e., just pixels that partially overlap the tiles). The integers are sorted.

Notes

There are potentially malicious cases where a pixel just brushes a tile, such that there is a very small area where
the pixel overlaps the tile. To guard against these case, call this function with progressively larger step values

until it converges.

desimodel. footprint.tiles2pix (nside, tiles=None, radius=None, per_tile=False, fact=128)

Returns sorted array of pixels that overlap the tiles.
Parameters

e nside (int)—- HEALPIX nside, 2 xk where 0 < k < 30.

* tiles (array—-like or Table-like, optional)— Integer tile IDs, or None to

use all DESI tiles from desimodel.io.load tiles ().

* radius (float, optional) — tile radius in degrees; if None use desimodel.

focalplane.get_tile_radius_deg().

* per_tile (bool, optional)-If True,return a list of arrays of pixels per tile.

* fact (int, optional) — Factor healpy uses to resolve pixel overlaps. When this is
large there are fewer false positives at the expense of run time (although fact=2* x 8 seems

fast). Must be a power of 2.

18

Chapter 2. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://healpy.readthedocs.io/en/latest/generated/healpy.boundaries.html
http://healpy.readthedocs.io/en/latest/generated/healpy.boundaries.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

desimodel Documentation, Release 0.17.0

Returns Integer array of pixel numbers that cover these tiles; or if per_tile is True, returns list of
arrays such that pixels [1] is an array of pixel numbers covering tiles[i].

2.2.4 desimodel.inputs

Code for working with raw input data to the DESI model data.

2.2.5 desimodel.inputs.docdb

Utility functions for working with DocDB files.

desimodel.inputs.docdb._auth (machine="desi.lbl.gov’)
Get authentication credentials.

desimodel.inputs.docdb._xls_col2int (col)
Convert column string name to index, starting at 0

eg. A->0,B->1,... Z->25, AA -> 26, AB ->27

desimodel.inputs.docdb.download (docnum, docver, filename, outdir=None, overwrite=False)
Downloads and writes outdir/DESI-{docnum}v{docver}-{filename}

Parameters
* docnum — integer DocDB number
* docver - integer version number
* filename - string filename within that DocDB entry

Options: outdir: output directory; default SDESIMODEL/data/inputs/docdb/ overwrite: overwrite pre-existing
file

Returns path to output file written

Notes

 only supports python3
e creates outdir if needed
 prepends DESI-{docnum}v{docver} to {filename} even if filename already starts with that (in DocDB,

some do and some don’t...)

desimodel.inputs.docdb.xls_read_col (filename, sheetname, column, firstrow, lastrow,
dtype=None)
Read Excel file column from firstrow to lastrow

Parameters
e filename (st r)— Excel filename
¢ sheetname (st r) - sheet name within the filename
* column (st r)— Excel-style column string, e.g. ‘A’, ‘B’, or ‘AC’
e firstrow (int)— l-indexed first row to include

* lastrow (int) — 1-indexed last row to include

2.2. The desimodel package/API 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

desimodel Documentation, Release 0.17.0

Options: dtype: convert output to this numpy dtype

Returns numpy array of data

Example

B5:B10 -> column="B’, firstrow=>5, lastrow=10 -> length 6 array

desimodel.inputs.docdb.xls_read_row (filename, sheetname, rownum, firstcol, lastcol,
dtype=None)
Read Excel file row from firstcol to lastcol

Parameters
e filename (st r)— Excel filename
* sheetname (st r) — sheet name within the filename
e rownum (int)— l-indexed row to read
* firstcol (str)— Excel-style column name, e.g. ‘A’, ‘B’, or ‘AC’

* lastcol (st r)—last column to include
Options: dtype: convert output to this numpy dtype

Returns numpy array of data

Example

B5:D5 -> rownum=S5, firstcol="B’, lastcol="D’ -> length 3 array

2.2.6 desimodel.inputs.fiberpos

Utilities for updating positioner to fiber mapping.

desimodel.inputs.fiberpos.update (festdir=None, seed=2)
Update positioner to fiber number mapping from DocDB

Options:
testdir: if not None, write files here instead of $DESIMODEL /data/footprint/fiberpos*
seed: integer random number seed for randomization within a cartridge

Werites testdir/fiberpos* or DESIMODEL/data/focalplane/fiberpos*

desimodel.inputs.fiberpos.write_text_fiberpos (filename, fiberpos)
Writes a fiberpos table to filename, maintaining backwards compatibility with the original fiberpos.txt format

Parameters
* filename - output file name string

» fiberpos — astropy Table of fiber positions

20 Chapter 2. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

desimodel Documentation, Release 0.17.0

2.2.7 desimodel.inputs.focalplane

Utilities for constructing a focalplane model.

desimodel.inputs.focalplane.create (festdir=None, posdir=None, fibermaps=None, petal-
loc=None, startvalid=None, fillfake=False, fakeoff-

set=False, fakefiberpos=False, reset=False)
Construct DESI focalplane and state files.

This function gathers information from the following sources:
* Petal verification files on DocDB
* Positioner device configuration files (e.g. from svn).

* DESI-0530, to get the mapping from device ID to device type as well as the nominal device X/Y
offsets on petal O (for fillfake option).

* Exclusion configobj files in SDESIMODEL/data/focalplane.

Parameters
* testdir (str) - Override the output directory for testing.

* posdir (str) — Directory containing the many positioner conf files. If None, simulate
identical, nominal positioners. A None value will force fillfake=True.

* fibermaps (11st) — Override list of tuples (DocDB number, DocDB version, DocDB
csv file) of where to find the petal mapping files.

* petalloc (dict)— Mapping of petal ID to petal location.

* startvalid (st r)— The first time when this focalplane model is valid. ISO 8601 format
string.

* fillfake (bool)—If True, fill missing device locations with fake positioners with nom-
inal values for use in simulations.

» fakeoffset (bool) - If True, artificially sets the theta / phi angle offsets to zero. This
replicates the behavior of legacy fiberassign and should only be used for testing.

* fakefiberpos (bool) - If True, ignore the real fibermaps and load the old fiberpos file
to get the mapping. Only useful for testing.

* reset (bool) — If True, ignore all previous focalplane models and start with all posi-
tioners “good”. Default propagates the state of most recent model, after verifying that the
positioners are the same.

Returns None
desimodel.inputs.focalplane.devices_from_fiberpos (fp)
Populate focalplane properties from a fiberpos file.

This is only used for testing consistency with the previous fiberpos files. It should not be used for work with the
real instrument. The focalplane properties are modified in place.

Parameters fp (dict)— The focalplane dictionary.
Returns None

desimodel.inputs.focalplane.devices_from_files (fp, posdir=None, fillfake=False, fakeoff-

set=False, fibermaps=None)
Populate focalplane properties from information in files.

2.2. The desimodel package/API 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

desimodel Documentation, Release 0.17.0

This populates the focalplane with device information gathered from the “pos_settings” files in svn and from
the “Petal verification” files on DocDB.

The focalplane dictionary is modified in place.
Parameters
* fp (dict) - The focalplane dictionary.
* posdir (str) - Directory containing the many positioner conf files.

» fillfake (bool) — If true, fill missing POS and ETC locations with a fake nominal
positioner.

* fakeoffset (bool) — If true, use theta / phi offsets that matched very old versions of
fiberassign.

* fibermaps (11st)— (optional) Override list of tuples (DocDB number, DocDB version,
DocDB csv file) of where to find the petal mapping files.

Returns None

2.2.8 desimodel.inputs.throughput

Utilities for updating throughput model.

desimodel.inputs.throughput .get_waveminmax (psffile)
return wmin, wmax as taken from the header of a PSF file, e.g. $DESIMODEL /data/specpsf/psf-b.fits

desimodel.inputs.throughput.load_fiberinput (filename)
Load fiberinput as calculated by fiberloss.py

Parameters f£ilename —fiberloss input file, e.g. $DESIMODEL/data/throughput/fiberloss-elg.dat
Returns InterpolatedUnivariateSpline instance.

desimodel.inputs.throughput.load_spec_throughputs (filenames, columns="ABCD’,
first_row=2, last_row=647)
Loads spectrograph*CCD throughputs from DESI-5501 excel files.

Parameters filenames — list of per-spectrograph filenames.
Returns arrays of wavelength in nm and throughput per spectrograph.

desimodel.inputs.throughput.load_throughput (filename, specthru_row=95, thru_row=97)
Load throughputs from DESI-0347, removing the spectrograph contributions which will be loaded separately
from higher resolution data.

Parameters f£ilename — DESI-0347 Excel file location
Returns (thruspine, xIsdata), where

thruspline: InterpolatedUnivariateSpline of thru vs. wave[Angstroms] xIsdata: tuple of (wave, to-
talthru, specthru)

Notes

» Alas, DESI-0347 doesn’t fill in the final throughput for 3500 and 9950 Angstroms, even though the inputs
are there.

22 Chapter 2. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

desimodel Documentation, Release 0.17.0

desimodel.inputs.throughput .update (festdir=None, desi347_version=16, desi5501_version=3,

desi5501_KOSI=True)
Update thru-[brz].fits from DESI-0347 and DESI-0344

Parameters

* testdir — If not None, write files here instead of standard locations under $DESI-
MODEL/data/

e desi347_version — version of DESI-347 to use
¢ desi5501 version — version of DESI-5501 to use

* [bool] (desi5501_KOSTI) - use KOSI throughput measurements in 5501

2.2.9 desimodel.install

Install data files not handled by pip install.

desimodel.install.assert_svn_exists ()
Assert svn command exists and raise an informative error if not

desimodel.install.default_install dir ()
Return the default install directory. Assumes this file lives in a ‘site-packages’ directory.

Returns The path to the install directory.
Return type str

desimodel.install.install (desimodel=None, version=None)
Primary workhorse function.

Parameters
* desimodel (str, optional) — Allows the install directory to be explicitly set.
* version (str, optional) — Allows the desimodel version to be explicitly set.
Raises RuntimeError — Standard error output from svn export command when status is non-zero.

desimodel.install.main ()
Entry point for the install_desimodel_data script.

Returns An integer suitable for passing to sys.exit ().
Return type int

desimodel.install.svn_export (desimodel_version=None)
Create a svn export command suitable for downloading a particular desimodel version.

Parameters desimodel_version (str, optional) — The version X.Y.Z to download, trunk, or
something of the form branches/... Defaults to trunk.

Returns A svn command in list form, suitable for passing to subprocess.Popen.

Return type 1ist

2.2.10 desimodel.io

I/0 utility functions for files in desimodel.

2.2. The desimodel package/API 23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/sys.html#sys.exit
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/stdtypes.html#list

desimodel Documentation, Release 0.17.0

desimodel.io.datadir ()
Returns location to desimodel data.

If set, DESIMODEL overrides data installed with the package.

desimodel.io.findfile (filename)
Return full path to data file $SDESIMODEL/data/filename.

Parameters filename (str)— Name of the file, relative to the desimodel data directory.
Returns The full path.

Return type str

Notes
This is a precursor for a potential future refactor where desimodel data would be installed with the package and
DESIMODEL would become an optional override.

desimodel.io.load_desiparams ()
Returns DESI parameter dictionary loaded from $DESIMODEL/data/desi.yaml.

Returns The parameters read from the YAML file.
Return type dict

desimodel.io.load deviceloc()
Returns a table from $SDESIMODEL/data/focalplane/fiberpos—all.fits.

Returns The data from the FITS file, with columns converted to uppercase.
Return type Table

desimodel.io.load_fiberpos ()
Returns fiberpos table from $SDESIMODEL/data/focalplane/fiberpos.fits.

Returns The data from the FITS file, sorted by FIBER.
Return type Table

desimodel.io.load_focalplane (time=None)
Load the focalplane state that is valid for the given time.

Parameters time (datetime)— The time to query with explicit timezone. Default to current time
(now ()) with timezone UTC.

Returns A tuple of (FP layout, exclusion polygons, state, time string). The FP layout is a Table.
The exclusion polygons are a dictionary indexed by names that are referenced in the state. The
state is a Table. The time string is the resulting UTC ISO format time string for the creation date
of the FP model.

Return type tuple

desimodel.io.load_gfa()
Returns GFA table from SDESIMODEL/data/focalplane/gfa.ecsv.

Returns The data from the ECSV file.
Return type Table

desimodel.io.load_pixweight (nside, pixmap=None)
Loads SDESIMODEL/data/footprint/desi-healpix-weights.fits.

Parameters

24 Chapter 2. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime.now
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table

desimodel Documentation, Release 0.17.0

* nside (int) — After loading, the array will be resampled to the passed HEALPix nside.

* pixmap (FITS_rec, optional) — Input pixel weight map, already read from a weights file.
Returns HEALPix weight map for the DESI footprint at the requested nside.
Return type Weight

desimodel.io.load_platescale()
Loads platescale.txt.

Returns The data table read from the file.

Return type recarray

Notes

The returned object has these columns:

radius Radius from center of focal plane [mm].

theta Radial angle that has a centroid at this radius [deg].
radial_platescale Meridional (radial) plate scale [um/arcsec].
az_platescale: Sagittal (azimuthal) plate scale [um/arcsec].
arclength: Unknown description.

desimodel.io.load_psf (channel)
Returns specter PSF object for the given channel ‘b’, ‘t’, or ‘z’.

Parameters channel ({'b’', 'r', 'z'})- Spectrograph channel.
Returns A specter PSF object.
Return type PSF

desimodel.io.load_target_info ()
Loads data/targets/targets.yaml and returns the nested dictionary.

This is primarily syntactic sugar to avoid end users constructing paths and filenames by hand (which e.g. broke
when targets.dat was renamed to targets.yaml).

Returns The dictionary read from the YAML file.
Return type dict

desimodel.io.load_throughput (channel)
Returns specter Throughput object for the given channel ‘b’, ‘r’, or ‘z’.

Parameters channel ({'b’', 'r', 'z'})- Spectrograph channel.
Returns A specter throughput object.
Return type Throughput

desimodel.io.load_tiles (onlydesi=True, extra=False, tilesfile=None, cache=True)
Return DESI tiles structure from $SDESIMODEL/data/footprint/desi-tiles.fits.

Parameters
* onlydesi (bool, optional) — If True, trim to just the tiles in the DESI footprint.

* extra (bool, optional) — If True, include extra layers with PROGRAM="EXTRA"'.

2.2. The desimodel package/API 25

https://docs.python.org/3/library/functions.html#int
https://docs.astropy.org/en/stable/io/fits/api/tables.html#astropy.io.fits.FITS_rec
https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

desimodel Documentation, Release 0.17.0

* tilesfile (str, optional) — Name of tiles file to load; or None for default. See Notes
for details.

* cache (bool, optional) — If False, force reload of data from tiles file, instead of using
cached values.

Returns The data table portion of the FITS file.
Return type FITS rec

Raises F'ileNotFoundError — If the value of tilesfile does not exist.

Notes

Keyword-based environment variable expansion is performed on the tilesfile value, so e.g.:

tiles = load_tiles(tilesfile=" /my-tiles.fits")

will be expanded with the value of HOME.
If the parameter tilesfile is set, this function uses the following search method:
1. If the value includes an explicit path, even . /, use that file.

2. If the value does not include an explicit path, and the file name is identical to a file in $SDESIMODEL/
data/footprint/, use the file in SDESIMODEL/data/footprint/ and issue a warning.

3. If no matching file can be found at all, raise an exception.

desimodel.io.reset_cache ()
Reset I/0 cache.

2.2.11 desimodel.trim

Code for trimming desimodel/data into smaller files.

desimodel.trim.inout (indir, outdir, filename)
returns os.path.join(indir, filename) and .join(outdir, filename)

desimodel.trim.rebin_image (image, n)
rebin 2D array pix into bins of size n x n

New binsize must be evenly divisible into original pix image

desimodel.trim.trim_data (indir, outdir, overwrite=False)
Trim a $DESIMODEL/data directory into a lightweight version for testing.

Parameters
* indir (str)— A $DESIMODEL/data directory from svn.
* outdir (str)— Output data directory location.
* overwrite (bool, optional)-If True, remove outdir if it already exists.

desimodel.trim.trim_focalplane (indir, outdir)
copy everything in focalplane

desimodel .trim.trim_footprint (indir, outdir)
Copies subset of desi-tiles.fits and .ecsv but not .par. Also creates a corresponding version of desi-healpix-
weights.fits.

26 Chapter 2. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.astropy.org/en/stable/io/fits/api/tables.html#astropy.io.fits.FITS_rec
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://matplotlib.org/stable/users/faq/environment_variables_faq.html#envvar-HOME
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

desimodel Documentation, Release 0.17.0

desimodel.trim.trim_inputs (indir, outdir)
Don’t copy any inputs

desimodel.trim.trim_sky (indir, outdir)
copy solarspec file as-is

desimodel.trim.trim_specpsf (indir, outdir)
trim specpsf files to be much smaller

desimodel.trim.trim_spectra (indir, outdir)
downsample spectra, and only a few of them

desimodel.trim.trim_targets (indir, outdir)
copy everything in targets/

desimodel.trim.trim_throughput (indir, outdir)
downsample throughput files

desimodel.trim.trim weather (indir, outdir)
copy everything in weather/

2.2.12 desimodel.weather

Model of the expected weather conditions at KPNO during the DESI survey.

To generate a random time series of expected FWHM seeing in arcsecs and atmospheric transparency, use, for example:

n = 10000

dt = 300 # seconds

t = np.arange(n) * dt

gen = np.random.RandomState (seed=123)

seeing = sample_seeing(n, dt_sec=dt, gen=gen)
transp = sample_transp(n, dt_sec=dt, gen=gen)

The resulting arrays are randomly sampled from models of the 1D probability density and 2-point power spectral
density derived from MzLS observations. See DESI-doc-3087 for details.

Used by surveysim.weather for simulations of DESI observing and survey strategy studies.

desimodel.weather._seeing_fit_model (x)
Evalute the fit to MzLS seeing described in DESI-doc-3087.

desimodel.weather._seeing psd (freq)
Evaluate the ‘chi-by-eye’ fit of the seeing PSD described in DESI-doc-3087.

desimodel .weather._transp_psd (freq)
Evaluate the ‘chi-by-eye’ fit of the transparency PSD described in DESI-doc-3087.

desimodel.weather.dome_closed_fractions (start_date, stop_date, replay="Y2007, Y2008,

Y2009, Y2010, Y2011, Y2012, Y2013, Y2014")
Return dome-closed fractions for each night of the survey.

Years can be replayed in any order. If the number of years to replay is less than the survey duration, they are
repeated.

Parameters

* start_date (datetime.date or None)-— Survey starts on the evening of this date.
Use the first_day config parameter if None (the default).

* stop_date (datetime.date or None)— Survey stops on the morning of this date.
Use the 1ast_day config parameter if None (the default).

2.2. The desimodel package/API 27

https://desi.lbl.gov/DocDB/cgi-bin/private/ShowDocument?docid=3087
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/constants.html#None

desimodel Documentation, Release 0.17.0

* replay (str) — Comma-separated list of years to replay, identified by arbitrary strings
that must match column names in the DESIMODEL weather history.

Returns 1D array of N probabilities between 0-1, where N is the number of nights spanned by the
start and stop dates.

Return type numpy array

desimodel .weather.get_seeing_ pdf (median_seeing=1.1, max_seeing=2.5, n=250)
Return PDF of FWHM seeing for specified clipped median value.

Note that this is atmospheric seeing, not delivered image quality. The reference wavelength for seeing values
is 6355A, in the r band, and the observed wavelength dependence in Dey & Valdes is closer to lambda *=*
(=1/15) than the lambda =+ (-1/5) predicted by Kolmogorov theory. See DESI-doc-3087 for details.

Scales the clipped MzLS seeing PDF in order to achieve the requested median value. Note that clipping is
applied before scaling, so the output PDF is clipped at scale * max_seeing.

Parameters

* median_seeing (float)— Target FWHM seeing value in arcsec. Must be in the range
[0.95, 1.30].

* max_seeing (float)— Calculate scaled median using unscaled values below this value.
* n (int) - Size of grid to use for tabulating the returned arrays.

Returns Tuple (fwhm, pdf) that tabulates pdf[fwhm]. Normalized so that np.sum (pdf * np.
gradient (fwhm)) = 1.

Return type tuple

desimodel .weather.get_transp_pdf (n=250)
Return PDF of atmospheric transparency.

Derived from MzLS observations, but corrected for dust accumulation and measurement error. See DESI-doc-
3087 for details.

Parameters n (int)— Size of grid to use for tabulating the returned arrays.

Returns Tuple (transp, pdf) that tabulates pdf[transp]. Normalized so that np.sum (pdf * np.
gradient (transp)) = 1.

Return type tuple

desimodel .weather.sample_seeing (n_sample, dt_sec=180.0, median_seeing=1.1,

max_seeing=2.5, gen=None)
Generate a random time series of FWHM seeing values.

See DESI-doc-3087 for details. Uses get_seeing pdf(), _seeing psd() and
sample timeseries().

Parameters
* n_sample (int)— Number of equally spaced samples to generate.
* dt_sec (float) - Time interval between samples in seconds.
* median_seeing (float)—See get_seeing pdf ().
* mex_seeing (float) - See get_seeing_pdf ().

* gen (np.random.RandomState or None) — Provide an existing RandomState for
full control of reproducible random numbers, or None for non-reproducible random num-
bers.

Returns 1D array of randomly generated samples.

28 Chapter 2. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

desimodel Documentation, Release 0.17.0

Return type array

desimodel .weather.sample_timeseries (x_grid, pdf grid, psd, n_sample, dt_sec=180.0,
gen=None)
Sample a time series specified by a power spectrum and 1D PDF.

The PSD should describe the temporal correlations of whitened samples. Generated samples will then be un-
whitened to recover the input 1D PDF. See DESI-doc-3087 for details.

Uses whiten transforms_from cdf ().
Parameters

* x_grid (array) — 1D array of N increasing grid values covering the parameter range to
sample from.

* pdf_grid(array) - 1D array of N increasing PDF values corresponding to each x_grid.
Does not need to be normalized.

* psd (callable)- Function of frequency in 1/days that returns the power-spectral density
of whitened temporal fluctations to sample from. Will only be called for positive frequen-
cies. Normalization does not matter.

* n_sample (int)— Number of equally spaced samples to generate.
* dt_sec (float)— Time interval between samples in seconds.

* gen (np.random.RandomState or None) — Provide an existing RandomState for
full control of reproducible random numbers, or None for non-reproducible random num-
bers.

desimodel .weather.sample_transp (n_sample, dt_sec=180.0, gen=None)
Generate a random time series of atmospheric transparency values.

See DESI-doc-3087 for details. Uses get_transp_pdf(), _transp_psd() and
sample timeseries ().

Parameters
* n_sample (int)— Number of equally spaced samples to generate.
* dt_sec (float) - Time interval between samples in seconds.

* gen (np.random.RandomState or None) — Provide an existing RandomState for
full control of reproducible random numbers, or None for non-reproducible random num-
bers.

Returns 1D array of randomly generated samples.
Return type array

desimodel .weather.whiten_transforms (data, data_min=None, data_max=None)
Calculate a pair of transforms to whiten and unwhiten a distribution.

Uses desimodel.weather.whiten_transforms_from cdf ().
Parameters
* data (array) — 1D array of samples from the distribution to whiten.

* data_min (float or None) — Clip the distribution to this minimum value, or at
min(data) if None. Must be <= min(data).

* data_max (float or None) — Clip the distribution to this maximum value, or at
max(data) if None. Must be >= max(data).

Returns See desimodel.weather.whiten transforms_from cdf ().

2.2. The desimodel package/API 29

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

desimodel Documentation, Release 0.17.0

Return type tuple

desimodel .weather.whiten_transforms_from_cdf (x, cdf)
Calculate a pair of transforms to whiten and unwhiten a distribution.

The whitening transform is monotonic and invertible.
Parameters

* x (array) — 1D array of non-decreasing values giving bin edges for the distribution to
whiten and unwhiten.

* cdf (array) — 1D array of non-decreasing values giving the cummulative probability
density associated with each bin edge. Does not need to be normalized. Must have the same
length as x.

Returns Tuple (F,G) of callable objects that whiten y=F(x) and unwhiten x=G(y) samples x of the
input distribution, so that y has a Gaussian distribution with zero mean and unit variance.

Return type tuple

2.3 How to update inputs from DocDB

Context: Inputs from DocDB that require reformatting before using are kept in data/inputs/ and then reformatted using
scripts in bin/ . Inputs from DocDB that can be used as-is are directly added to their final location under data/.

2.3.1 Basic Setup

Make branches of both desimodel GitHub code and svn data:

git checkout -b update_inputs
base=https://desi.lbl.gov/svn/code/desimodel

svn copy $base/trunk S$base/branches/update_inputs
svn checkout S$base/branches/update_inputs/data
export DESIMODEL="pwd"

Add entries to SHOME/.netrc to enable downloading DocDB files without having to enter a password every time:

machine desi.lbl.gov
login StephenBailey
password NotMyRealPassword

The code in desimodel. inputs.docdb requires requests (for communicating with DocDB) and xlrd (for reading
Microsoft Excel spreadsheets). Both of these are available via Anaconda.

2.3.2 Inputs to update

The update functions below belong to desimodel. inputs and take an optional argument testdir to specify an
alternate directory where updated outputs should be written. When testdir is not specified, outputs are written to
their standard locations under desimodel.io.datadir ().

30 Chapter 2. Contents

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
http://docs.python-requests.org/en/master/
http://www.python-excel.org/

desimodel Documentation, Release 0.17.0

DESI-0530-v13 Excel spreadsheet to .ecsv file for GFA locations

This writes the gfa . ecsv file containing the GFA data, which is pulled from the “GFALocation” tab on the DESI-
0530-v13 Excel spreadsheet and from rows 16-23 and columns A-I. The function desimodel. inputs.gfa.
build_gfa_table () writes the file in the current directory.

import desimodel.inputs.gfa
desimodel.inputs.gfa.build_gfa_table()

Positioner to Fiber Mapping

This updates the mapping of device locations on the focal plane to spectrograph fiber numbers using DESI-0530-v14,
DESI-2721-v2 and DESI-329-v15.

import desimodel.inputs.fiberpos
desimodel.inputs.fiberpos.update ()

To update a DESI-doc versions, edit the corresponding docdb . download (.. .) call.

Throughput

This updates the throughput model from DESI-0347 and DESI-0344 and also copies the top-level desi .yaml from
DESI-0347:

import desimodel.inputs.throughput
desimodel.inputs.throughput.update ()

To update the version of DESI-347 that is used, change the default value of desi347_version in the update ()
function. Similiarly for DESI-344.

Only three rows of the throughput spreadsheet from DESI-347 are used, with hard-coded row numbers. There
are some simple checks that these are correct, using the specthru_row and thru_row arguments to
load_throughput (), but check the outputs carefully if you think the spreadsheet structure might have changed.

Blur and Offsets
Use the notebook doc/nb/DESI-0347_Throughput.ipynb to update the following ouputs derivied from
DESI-347:

* data/inputs/throughput/raytracing.txt

* data/throughput/DESI-0347_blur.ecsv

* data/throughput/DESI-0347_offset.ecsv

* data/throughput/DESI-0347_static_offset_[123].fits

Refer to the instructions in that notebook for details.

Testing

After changing any outputs that might break a unit test, update the small test dataset following 7esting desimodel and
edit DESIMODEL_VERSIONin .travis.yml to point to the new version.

2.3. How to update inputs from DocDB 31

desimodel Documentation, Release 0.17.0

Commissioning Instrument corners

This updates the CI as-measured corner locations from DESI-4633v11 Corners.txt and reformats them into
the GFA-corners format needed by desimodel, writing the results into $$DESIMODEL/data/focalplane/
ci-corners.ecsv:

import desimodel.inputs.ci
desimodel.inputs.ci.update ()

We don’t anticipate needing to update this again, so this section is just documenting the provenance of that file.

Commit Changes to SVN

Once you have finished making updates on the update_inputs svn branch, checkout the trunk and merge your
changes using:

svn checkout $base/trunk/data data.trunk

cd data.trunk

svn merge —-dry-run S$base/branches/update_inputs/data
Make sure everything looks good. Then do it for real.
svn merge $base/branches/update_inputs/data

svn commit -m "Merge branch update_inputs into trunk"

Finally, remove the update_inputs branch:

svn remove S$base/branches/update_inputs -m "Cleanup after updating inputs"

and tag the updated trunk (replace 0.13.0 as needed):

version=0.13.0
svn copy $base/trunk S$base/tags/$version -m "Tagging desimodel S$version"

2.3.3 To Do

Update methodology and document how to update the following:
* PSF model from DESI-0334
 PSF spots -> PSF for quicksim
* Fiber input loss calculations

* desimodel/data/focalplane/platescale.txt

2.4 Testing desimodel

2.4.1 Introduction

Tests using desimodel are a bit tricky since most of the code involves reading data files that are not included with the
git product. In addition, the data files can be rather large, both individually and as a package. This document describes
how to create lightweight test branches of the desimodel data that can be used for rapid testing.

32 Chapter 2. Contents

desimodel Documentation, Release 0.17.0

2.4.2 When to Create a Test Branch

The word “branch(es)” below refers to svn branches not git branches, unless otherwise noted.

Test branches should track major changes to the code and data, but should not change for minor bug fixes in the code.
For example, a branch named ‘test-1.0" should work with all code that has a tag of the form 1.0.x. Similarly a ‘test-1.1’
branch should work with all code that has a tag of the form 1.1.x.

Test branches should be created immedately after the trunk has been tagged to produce a new minor version. For
example, immedately after a svn tag ‘1.0.0’ is created, the ‘test-1.0’ branch should be created before there are any
additional changes to the trunkk.

2.4.3 How to Create a Test Branch

1. Create a branch in the standard way:

base=https://desi.lbl.gov/svn/code/desimodel
svn copy Sbase/trunk $base/branches/test-1.0 -m "Start new test branch"

2. Check out the branch, if you did not create it in your own checkout:

’svn checkout $base/branches/test-1.0

3. Change to the branch directory:

’cd test-1.0

4. Run the trim code to create a separate datalite directory:

’python —-c "from desimodel.trim import trim_data; trim_data('data', 'datalite')"

5. Add the datalite directory, remove data and commit:

svn add datalite
svn remove data
svn commit -m "Adding lite files"

6. Rename the existing datalite directory:

svn move datalite data
svn commit —-m "Rename datalite/ back to data/"

7. Now tests can get this lightweight branch on-the-fly with:

svn export S$base/branches/test-1.0

If you find any problems, just wipe out the branch and start again, e.g.:

svn rm $base/branches/test-1.0 -m "Starting over"

2.4. Testing desimodel 33

desimodel Documentation, Release 0.17.0

2.5 Focalplane Hardware Model

2.5.1 Overview

The DESI focalplane consists of petals with individual positioners and each positioner is a unique device connected
to a fiber. The fibers travel to the spectrographs and are connected to a position on a slitblock. Each positioner has a
range of angular motion along two axes (theta and phi).

The canonical focalplane calibration is stored in the ICS database, but we want to copy it into desimodel for offline
analysis and to be able to tag exactly what version was used for fiber assignment and data processing runs.

The focalplane model currently uses the CS5 coordinate system for the X/Y locations of devices on the focalplane.

2.5.2 Tracking Changes

Although the generated focalplane models are checked into svn, we need to be able to get the state of the hardware
at any time, across the full history of the DESI project. We enable this feature through the use of our file format (see
section below on the details of the format). Since most changes are small (a positioner breaks or gets stuck, etc), we
keep a running log of these small changes. A completely new model is only generated for large events (e.g. a petal is
swapped out). When a focalplane is loaded, the most recent model for a given time is found and the events in this log
are replayed up to the requested time. It is worth emphasizing the previous text again. When a focalplane is loaded for
a particular timestamp:

1. Each focalplane model has a starting time, and remains valid until it is superceded by a newer model. The
most recent set of 3 focalplane files which comes before the requested timestamp is read from disk. The static
focalplane properties are kept as a Table and the exclusion polygons are read into a dictionary.

2. The state log (one of the 3 files) is parsed line by line. If the timestamp for that line comes before the requested
time, then the event in that line is applied. All positioners have an initial state specified in the state log with a
timestamp that matches the starting time of the focalplane. Subsequent events are appended to the state log with
a timestamp.

The file formats used are text-based (ECSV and YAML). However, these are intended to be modified by the included
scripts, which can ensure that the formatting is correct. The risk of typos and subtle errors if hand-editing these files
is large. If you find that you frequently need to edit these files, then please open an issue to document your use case.

2.5.3 Inputs

Focalplane models are generated and updated from ICS database dumps at KPNO in /data/focalplane/
calibration/«*.ecsv.

Additionally, the following DocDB files are downloaded and parsed to get the mapping of fiber focalplane location to
slitblock location (i.e. fiber number on the spectrographs).

34 Chapter 2. Contents

desimodel Documentation, Release 0.17.0

DocDB Number | Purpose

4042 Petal verification for petal ID 02
4043 Petal verification for petal ID 03
4807 Petal verification for petal ID 04
4808 Petal verification for petal ID 05
4809 Petal verification for petal ID 06
4190 Petal verification for petal ID 07
4806 Petal verification for petal ID 08
4810 Petal verification for petal ID 09
4042 Petal verification for petal ID 10
4042 Petal verification for petal ID 11

2.5.4 Generating a New Model

Under normal circumstances focalplane updates are done daily by a KPNO cronjob running etc/
desimodel_sync_kpno_cron.sh (update existing model) or etc/desimodel_sync_kpno_force.sh
(use ——reset to make a new model). The rest of this section documents what those are doing “under the hood”, but
it should not be necessary to run by hand.

A new focalplane model is generated with the desi_sync_focalplane script:

usage: desi_sync_focalplane [-h] —--calib_file CALIB_FILE [--test] [--reset]
[-—simulate_good] [-—-debug_dir DEBUG_DIR]
[-——commit]

optional arguments:
-h, —-help show this help message and exit
—-—calib_file CALIB_FILE
The ECSV database dump file

-—test Go through the process of updating the focalplane, but
do not actually write new files.

—-—reset Create a new focalplane model from the calib file,
ignoring all previous state information

--simulate_good Create a focalplane model for simulations. Non-broken

fibers set to good
--debug_dir DEBUG_DIR

Override the output directory for debugging.
——commit Commit updated focalplane model to svn.

Note that the ——reset option generates a new focalplane model, while without that option it updates the state ledger
of the current focalplane model for only the positioners that changed. In addition to the ——calib_file input
with the latest ICS database focalplane dump, this script automatically downloads the necessary DocDB entries listed
above, which requires you to have DESI DocDB credentials stored in your SHOME / . net rc file.

See desimodel tags 0.16.0 and prior for documentation of an older script desi_generate_focalplane which
uses lab-measured focalplane metrology from DESISVN code/focalplane/fp_settings/pos_settings
to create a new focalplane model. This has been removed from newer versions of desimodel in favor of loading the
metrology as measured in-situ at KPNO.

2.5.5 Updating the State of a Model

After a focalplane model is created, the state can be updated by rerunning desi_sync_focalplane with a new
ICS database dump without using the ——reset option. If needed, one can override the database to update the state
of an individual positioner with the following command line tool:

2.5. Focalplane Hardware Model 35

desimodel Documentation, Release 0.17.0

usage: desi_update_focalplane_log [-h] [--location LOCATION] [--petal PETAL]
[-—device DEVICE] [—--state STATE]
[-—exclusion EXCLUSION] [--time TIME]

optional arguments:
-h, —-help show this help message and exit
——location LOCATION The device location (petal » 1000 + device loc)
modified by this event.

—-—-petal PETAL The petal (focalplane location, not petal ID) modified
by this event (--device must also be used)

——device DEVICE The device location (--petal must also be given)
modified by this event.

--state STATE The new state to assign to the device.

——exclusion EXCLUSION
The new exclusion polygon to assign to the device
(e.g. 'legacy', 'default', etc)

——time TIME Optional date/time (default is current date/time) when
this event happens. Format is YYYY-MM-DDTHH:mm:ss in
UTC time.

2.5.6 Updating the Exclusion Polygons in a Model

After a focalplane model is created, one can update the available exclusion polygons with the following command line
tool:

usage: desi_update_focalplane_exclusion [-h]
[-—exclusion [EXCLUSION [EXCLUSION ...]11]
[-—time TIME]

optional arguments:

-h, --help show this help message and exit

—-—exclusion [EXCLUSION [EXCLUSION ...]]
One or more text config files containing some
exclusion polygons to use. For example,
'SDESIMODEL/exclusions.conf'. This file should contain
a parameter 'NAME' with the name to use for this set
of exclusions.

——time TIME Optional date/time (default is current date/time) to
use when selecting the focalplane.Format is YYYY-MM-
DDTHH:mm:ss in UTC time.

Existing exclusion polygons with the same name as any input files will be replaced. New polygons will be appended.

2.5.7 File Format and Loading

A single focalplane model (with a starting valid datetime) consist of 3 files on disk. These files contain matching date
/ time stamps that correspond the the first valid time for that focalplane model. For example:

desi-focalplane_2019-09-16T00:00:00.ecsv
desi-exclusion_2019-09-16T00:00:00.yaml
desi-state_2019-09-16T00:00:00.ecsv

The first is an ECSV text file containing the static information such as the positioner locations and angle range, the
mapping of device locations to fibers, etc.

36 Chapter 2. Contents

desimodel Documentation, Release 0.17.0

Column Data Type | Description

PETAL int32 Petal location [0-9]

DEVICE int32 Device location on the petal

LOCATION int32 PETAL * 1000 + DEVICE

PETAL_ID int32 The physical petal ID

DEVICE_ID string The physical device ID string

DEVICE_TYPE | string The device type (POS, ETC, FIF)
SLITBLOCK int32 The slit block where this fiber goes
BLOCKFIBER int32 The fiber index within the slit block

CABLE int32 The cable ID

CONDUIT string The conduit

FIBER int32 PETAL * 500 + SLITBLOCK * 25 + BLOCKFIBER
FWHM float64 FWHM at /3.9

FRD float64 FRD Throughput

ABS float64 ABS Throughput

OFFSET_X float64 X location of positioner center

OFFSET_Y float64 Y location of positioner center

OFFSET_T float64 THETA zero point angle

OFFSET_P float64 PHI zero point angle

LENGTH_RI1 float64 Length of THETA arm

LENGTH_R2 float64 Length of PHI arm

MAX_T float64 Maximum THETA angle relative to OFFSET_T
MIN_T float64 Minimum THETA angle relative to OFFSET_T
MAX_P float64 Maximum PHI angle relative to OFFSET_P
MIN_P float64 Minimum PHI angle relative to OFFSET_P

The second file is a YAML format file which contains one or more exclusion polygons for the positioners. Each named
exclusion entry actually has multiple polygons: for the GFA, petal boundary, theta arm and phi arm. These define the
shape of the polygon at the origin, which is then translated and rotated differently for every positioner based on the
arm length, etc. Exclusion polygons are specified in terms of lists of circles and line segments.

The third file is another ECSV format file that contains the state log for the focalplane model. This is the running log
of events that happen which modify the instantaneous state of the focalplane.

Column Data Type | Description

TIME string The timestamp of the event (UTC, ISO format)
PETAL int32 Petal location [0-9]

DEVICE int32 Device location on the petal

LOCATION int32 PETAL * 1000 + DEVICE

STATE uint32 State bit field (good == 0)

EXCLUSION | string The exclusion polygon for this device

The file formats above are documented for completeness, but you should not generally read these manually. Instead,
one calls the load_focalplane() function:

desimodel.io.load_ focalplane (time=None)
Load the focalplane state that is valid for the given time.

Parameters time (datet ime)— The time to query with explicit timezone. Default to current time
(now ()) with timezone UTC.

Returns A tuple of (FP layout, exclusion polygons, state, time string). The FP layout is a Table.
The exclusion polygons are a dictionary indexed by names that are referenced in the state. The

2.5. Focalplane Hardware Model 37

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime.now

desimodel Documentation, Release 0.17.0

state is a Table. The time string is the resulting UTC ISO format time string for the creation date
of the FP model.

Return type tuple

The state table returned by this function contains the instantaneous state of the focalplane at the input time (i.e. the log
of events has already been replayed and the state at the requested time is returned)

2.5.8 TO-DO

There are several small features needed:

* When marking fibers as broken or stuck, their current X/Y or theta/phi location should be marked. See https:
//github.com/desihub/desimodel/issues/122

* We should build this focalplane model from the online instrument DB. See https://github.com/desihub/
desimodel/issues/124

2.6 Fiber Positioners

2.6.1 Input Files

DESI-0530 defines the location of positioners on the focal plane.

DESI-2721 defines the mapping from cassettes of 50 positioners/fibers on the focal plane to bundles of fibers on
the spectrograph slit heads

2.6.2 Output Files

Within a cassette, the fiber order is randomized. desimodel.inputs.fiberpos.update() randomizes the fibers within a
cassette and outputs $SDESIMODEL/data/focalplane/fiberpos.[fits, txt, png] with the mapping of positioner -> fiber
number. fiberpos-all.[fits, ecsv] also includes non-spectrograph fiber positioner locations such as fiducials and sky
monitors.

2.6.3 Coordinate Systems

As defined in DESI-0481vl1 table 1 (last row “CS5 DESI Focal Plane), when the telescope is parked at zenith the +x
direction is East (+RA), +z is pointed toward the ground, and thus +y points south (-dec).

Note that y and z are sign swapped wrt to the other DESI coordinate systems: most coordinate systems think about +z
pointing toward the sky, while the focal plane thinks about +z as pointing away from the focal plane and thus away
from the sky.

2.7 Footprint

2.7.1 Files

desi-tiles.fits contains a tiling of the sky in 10 overlapping layers, with column /N_DESI indicating whether a particular
tile is within the DESI footprint. See DESI-0717 for a description of how desi-tiles.fits was generated.

38 Chapter 2. Contents

https://docs.python.org/3/library/stdtypes.html#tuple
https://github.com/desihub/desimodel/issues/122
https://github.com/desihub/desimodel/issues/122
https://github.com/desihub/desimodel/issues/124
https://github.com/desihub/desimodel/issues/124

desimodel Documentation, Release 0.17.0

desi-healpix-weights.fits contains a nside=256 nested healpix map of weights for what fraction of those healpix is
covered by the footprint. This was generated with:

from desimodel. footprint import pixweight
newmap = pixweight (256,outfile="desi-healpix-weights.fits")

2.8 PSF Spots

2.8.1 Overview

Spectrograph PSF files are in data/specpsf/desi-psf-*.fits . These are in the Specter “SpotGrid” format.

2.8.2 Converting Zemax spots to Specter spots

DocDB DESI-0334v1 contains spots from zemax + diffraction + CCD effects, sampled on a grid of wavelength and
slit position. Here are the commands to download and convert these to the files in etc/data/specpst/.
YOU NORMALLY SHOULD NOT NEED TO RUN THESE.

They are for reference for when we need to generate new PSF files from a new set of spots in DocDB:

cd somewhere
mkdir blue red nir

DOCDB_USER=StephenBailey
DOCDB_PASS=NotMyRealPassword

cd blue

SPOTFILE=DESI-0334-blue-images.zip

wget —-user $DOCDB_USER --password $DOCDB_PASS -0 $SPOTFILE \
"https://desi.1lbl.gov/DocDB/cgi-bin/private/RetrieveFile?docid=334; filename=

—$SPOTFILE; version=1"

unzip $SPOTFILE

rm $SPOTFILE

cd ../red

SPOTFILE=DESI-0334-red-images.zip

wget —-user $DOCDB_USER --password S$DOCDB_PASS -0 S$SPOTFILE \
"https://desi.1lbl.gov/DocDB/cgi-bin/private/RetrieveFile?docid=334; filename=

—$SPOTFILE; version=1"

unzip $SPOTFILE

rm $SPOTFILE

cd ../nir

SPOTFILE=DESI-0334-NIR-images-500.zip

wget —--user $DOCDB_USER —--password $DOCDB_PASS -O S$SPOTFILE \
"https://desi.lbl.gov/DocDB/cgi-bin/private/RetrieveFile?docid=334; filename=

—$SPOTFILE; version=1"

unzip S$SSPOTFILE

rm $SPOTFILE

cd ..
python $DESIMODEL/bin/spots2psf.py blue/Bluex.fits —--camera b \
-0 $DESIMODEL/data/specpsf/psf-b.fits

(continues on next page)

2.8. PSF Spots 39

https://github.com/sbailey/specter/blob/dev/doc/datamodel/psf.md

desimodel Documentation, Release 0.17.0

(continued from previous page)

python $DESIMODEL/bin/spots2psf.py red/Redx.fits —--camera r \
-0 S$DESIMODEL/data/specpsf/psf-r.fits

python $DESIMODEL/bin/spots2psf.py nir/NIR+.fits —--camera z \
-o $DESIMODEL/data/specpsf/psf-z.fits

rm -r blue nir red

2.9 Components to the throughput calculation

2.9.1 Introduction

The DESI throughput model comes from the systems engineering throughput budget spreadsheet DESI-0347, aug-
mented with higher resolution throughput data for the spectrographs + CCDs from DESI-0334. These are combined
with the KPNO extinction model ZenithExtinction-KPNO..fits and pre-calculated fiber input geometric loss in $DES-
IMODEL/data/throughput/fiberloss*.dat .

The various contributions to the throughput are stored in a binary table following the throughput format used by
Specter:

https://github.com/sbailey/specter/blob/dev/doc/datamodel/throughput.md
It is basically a binary table with columns:
* wavelength : in Angstroms
e extinction : atmospheric extinction in magnitudes per airmass
» fiberinput : geometrical loss at fiber input
* throughput : all other throughput terms, e.g. mirrors, spectrograph, CCDs

Different types of sources are affected by different combinations of throughput terms.

Term OBJECT | SKY | CALIB
EXTINCTION yes yes no
FIBERINPUT yes no no
THROUGHPUT | yes yes yes

Source types:
* OBJECT: astronomical objects, affected by all sources of throughput loss

* SKY: sky spectra do not have a geometrical loss term for the fiber input. Positioner misalignments and changes
to the atmospheric PSF still get the same amount of sky light down the fiber.

e CALIB: calibration lamps internal to the dome do not see atmospheric extinction or fiber geometric loss terms.

The sections below detail the input data used to generate this table.

2.9.2 Atmospheric Extinction

Affects astronomical objects and sky spectra, but not calibration exposures.

Depends upon airmass; extinction curve from ZenithExtinction-KPNO fits included in this product.

40 Chapter 2. Contents

https://github.com/sbailey/specter/blob/dev/doc/datamodel/throughput.md

desimodel Documentation, Release 0.17.0

2.9.3 Fiber Input

Affects astronomical objects, but not sky or calibration spectra.
Includes both PSF/aperture losses and pointing/guiding mis-alignment.
From:

* DESI-0347v2

row 16 “PSF and Aperture efficiency”

row 27 “Lateral errors”

row 52 “Fiber Defocus overall budget”

Multiplied then interpolated with a cubic spline

2.9.4 All other telescope, fiber, and instrument throughputs

Affects all object types.

From DESI-0347v11 row 112 (total throughput) divided by the low resolution spectrograph throughtput row 93, then
multiplied by the high resolution spectrograph+CCD throughputs in DESI-0334 -thru.txt files.

2.9.5 TODO

The spectrograph throughput numbers in DESI-0334 have been superseded by as-built measurements from a variety of
DocDB entries for each component of the spectrographs, as listed in DESI-0347 rows 97-110. These newer numbers
are not yet included in desimodel.

2.9. Components to the throughput calculation 41

desimodel Documentation, Release 0.17.0

42 Chapter 2. Contents

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

43

desimodel Documentation, Release 0.17.0

44 Chapter 3. Indices and tables

Python Module Index

d

desimodel,
desimodel.

desimodel

desimodel.
.inputs.docdb, 19
.inputs. fiberpos, 20
.inputs.focalplane, 20
inputs.throughput, 22

desimodel
desimodel
desimodel

desimodel.
desimodel.
desimodel.
.trim, 26

.weather, 27

desimodel
desimodel

12

focalplane.geometry, 12
.footprint, 15

inputs, 19

install, 23
io,23

45

desimodel Documentation, Release 0.17.0

46 Python Module Index

Index

Symbols

_auth () (in module desimodel.inputs.docdb), 19

_check_radec () (desi-
model.focalplane.geometry.FocalPlane
method), 12

_embed_sphere () (in module desimodel.footprint),
15

_extrapolate_r_s() (in module desi-
model.focalplane.geometry), 13

_seeing_fit_model () (in module desi-

model.weather), 27
_seeing_psd () (in module desimodel. weather), 27
_transp_psd () (in module desimodel. weather), 27

_xls_col2int () (in module desi-
model.inputs.docdb), 19

A

assert_svn_exists () (in module desi-

model.install), 23

C

create () (in module desimodel.inputs.focalplane), 21

D

datadir () (in module desimodel.io), 23

default_install_dir () (in module
model.install), 23

DESIMODEL, 6, 24

desimodel (module), 12

desimodel.focalplane.geometry (module), 12

desimodel. footprint (module), 15

desimodel . inputs (module), 19

desimodel.inputs.docdb (module), 19

desimodel.inputs. fiberpos (module), 20

desimodel.inputs. focalplane (module), 20

desimodel.inputs.throughput (module), 22

desimodel.install (module), 23

desimodel. io (module), 23

desimodel . trim (module), 26

desi-

desimodel .weather (module), 27

devices_from_fiberpos () (in module desi-
model.inputs.focalplane), 21

devices_from_files|() (in module desi-
model.inputs.focalplane), 21

dome_closed_fractions () (in module desi-

model.weather), 27
download () (in module desimodel.inputs.docdb), 19

E

environment variable
DESIMODEL, 6, 24
HOME, 26
INSTALL_DIR,7

F

fiber_area_arcsec2 () (in module desi-
model.focalplane.geometry), 13

find_points_in_tiles () (in module desi-
model.footprint), 15

find_points_radec () (in module desi-
model.footprint), 15

find_tiles_over_point () (in module desi-

model. footprint), 15
findfile () (in module desimodel.io), 24

FocalPlane (class in desimodel.focalplane.geometry),
12

G

get_radius_deg () (in module desi-
model.focalplane.geometry), 13
get_radius_mm () (in module desi-

model.focalplane.geometry), 14
get_seeing_pdf () (in module desimodel.weather),

28

get_tile_radec () (in module desimodel.footprint),
16

get_tile_radius_deg() (in module desi-

model.focalplane.geometry), 14

47

desimodel Documentation, Release 0.17.0

get_tile_radius_mm() (in module desi-
model.focalplane.geometry), 14

get_transp_pdf () (in module desimodel.weather),

28

get_waveminmax () (in module desi-
model.inputs.throughput), 22

Fl

HOME, 26

|

inout () (in module desimodel.trim), 26

install () (in module desimodel.install), 23

INSTALIL_DIR,7

is_point_in_desi () (in module desi-

model.footprint), 16

L

load_desiparams () (in module desimodel.io), 24
load_deviceloc () (in module desimodel.io), 24
load_fiberinput () (in module desi-
model.inputs.throughput), 22
load_fiberpos () (in module desimodel.io), 24
load_focalplane () (in module desimodel.io), 24
load_gfa () (in module desimodel.io), 24
load_pixweight () (in module desimodel.io), 24
load_platescale () (in module desimodel.io), 25
load_psf () (in module desimodel.io), 25
load_spec_throughputs () (in module
model.inputs.throughput), 22
load_target_info () (in module desimodel.io), 25
load_throughput () (in module desi-
model.inputs.throughput), 22
load_throughput () (in module desimodel.io), 25
load_tiles () (in module desimodel.io), 25

M

main () (in module desimodel.install), 23

P

pass2program () (in module desimodel.footprint), 16
pix2tiles () (in module desimodel.footprint), 16
pixweight () (in module desimodel.footprint), 16
program2pass () (in module desimodel.footprint), 17

Q

gs2xy ()

desi-

(in module desimodel.focalplane.geometry),
14

R

radec2pix () (in module desimodel.footprint), 17

radec2pos () (desimodel.focalplane. geOmetry.FocalPlang(y2 as ()

method), 12

radec2xy () (desimodel.focalplane.geometry.FocalPlane
method), 13

radec2xy () (in module
model.focalplane.geometry), 14

rebin_image () (in module desimodel.trim), 26

reset_cache () (in module desimodel.io), 26

S

sample_seeing () (in module desimodel.weather), 28

sample_timeseries () (in module desi-
model.weather), 29

sample_transp () (in module desimodel.weather), 29

set_tele_pointing() (desi-
model.focalplane.geometry.FocalPlane
method), 13

svn_export () (in module desimodel.install), 23

T

tileids2pix () (in module desimodel.footprint), 18
tiles2fracpix () (in module desimodel.footprint),
18
tiles2pix () (in module desimodel.footprint), 18
trim_data () (in module desimodel.trim), 26
trim_focalplane () (in module desimodel.trim), 26
trim_footprint () (in module desimodel.trim), 26
trim_inputs () (in module desimodel.trim), 26
trim_sky () (in module desimodel.trim), 27
trim_specpsf () (in module desimodel.trim), 27
trim_spectra () (in module desimodel.trim), 27
trim_targets () (in module desimodel.trim), 27
trim_throughput () (in module desimodel.trim), 27
trim_weather () (in module desimodel.trim), 27

U

update () (in module desimodel.inputs.fiberpos), 20
update () (in module desimodel.inputs.throughput), 22

W

whiten_transforms ()
model.weather), 29

whiten_transforms_from_cdf ()
desimodel.weather), 30

desi-

(in module desi-

(in module

write_text_fiberpos () (in module desi-
model.inputs.fiberpos), 20

X

x1ls_read_col () (in module desi-
model.inputs.docdb), 19

xls_read_row () (in module desi-

model.inputs.docdb), 20
xy2pos () (desimodel focalplane.geometry.FocalPlane
method), 13

(in module desimodel.focalplane.geometry),
14

48

Index

desimodel Documentation, Release 0.17.0

xy2radec () (desimodel.focalplane.geometry.FocalPlane
method), 13

xy2radec () (in module desi-
model.focalplane.geometry), 15

Index 49

	Introduction
	Contents
	Indices and tables
	Python Module Index
	Index

